18 research outputs found

    Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    Get PDF
    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N-2+O-2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O-4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (+/- 1 sigma) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO2 at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2

    An Overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality

    No full text
    International audienceThe 2013 Las Vegas Ozone Study (LVOS) was conducted in the late spring and early summer of 2013 to assess the seasonal contribution of stratosphere-to-troposphere transport (STT) and long-range transport to surface ozone in Clark County, Nevada and determine if these processes directly contribute to exceedances of the National Ambient Air Quality Standard (NAAQS) in this area. Secondary goals included the characterization of local ozone production, regional transport from the Los Angeles Basin, and impacts from wildfires. The LVOS measurement campaign took place at a former U.S. Air Force radar station ∼45 km northwest of Las Vegas on Angel Peak (∼2.7 km above mean sea level, asl) in the Spring Mountains. The study consisted of two extended periods (May 19-June 4 and June 22-28, 2013) with near daily 5-min averaged lidar measurements of ozone and backscatter profiles from the surface to ∼2.5 km above ground level (∼5.2 km asl), and continuous in situ measurements (May 20-June 28) of O3, CO, (1-min) and meteorological parameters (5-min) at the surface. These activities were guided by forecasts and analyses from the FLEXPART (FLEXible PARTticle) dispersion model and the Real Time Air Quality Modeling System (RAQMS), and the NOAA Geophysical Research Laboratory (NOAA GFDL) AM3 chemistry-climate model. In this paper, we describe the LVOS measurements and present an overview of the results. The combined measurements and model analyses show that STT directly contributed to each of the three O3 exceedances that occurred in Clark County during LVOS, with contributions to 8-h surface concentrations in excess of 30 ppbv on each of these days. The analyses show that long-range transport from Asia made smaller contributions (<10 ppbv) to surface O3 during two of those exceedances. The contribution of regional wildfires to surface O3 during the three LVOS exceedance events was found to be negligible, but wildfires were found to be a major factor during exceedance events that occurred before and after the LVOS campaign. Our analyses also shows that ozone exceedances would have occurred on more than 50% of the days during the six-week LVOS campaign if the 8-h ozone NAAQS had been 65 ppbv instead of 75 ppbv

    Coordinated profiling of stratospheric intrusions and transported pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet experiment (AJAX): Observations and comparison to HYSPLIT, RAQMS, and FLEXPART

    No full text
    International audienceGround-based lidars and ozonesondes belonging to the NASA-supported Tropospheric Ozone Lidar Network (TOLNet) are used in conjunction with the NASA Alpha Jet Atmospheric eXperiment (AJAX) to investigate the transport of stratospheric ozone and entrained pollution into the lower troposphere above the United States on May 24–25, 2013. TOLNet and AJAX measurements made in California, Nevada, and Alabama are compared to tropospheric ozone retrievals from the Atmospheric Infrared Sounder (AIRS), to back trajectories from the NOAA Air Resources Laboratory (ARL) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and to analyses from the NOAA/NESDIS Real-time Air Quality Modeling System (RAQMS) and FLEXPART particle dispersion model. The measurements and model analyses show much deeper descent of ozone-rich upper tropospheric/lower stratospheric air above the Desert Southwest than above the Southeast, and comparisons to surface measurements from regulatory monitors reporting to the U.S. EPA Air Quality System (AQS) suggest that there was a much greater surface impact in the Southwest including exceedances of the 2008 National Ambient Air Quality Standard (NAAQS) of 0.075 ppm in both Southern California and Nevada. Our analysis demonstrates the potential benefits to be gained by supplementing the existing surface ozone network with coordinated upper air observations by TOLNet
    corecore